<< >> Title Contents

[4] To Learn More


[4.1] What should I read to learn more?

  1. Gleick, J. (1987). Chaos, the Making of a New Science.
    London, Heinemann. http://www.around.com/chaos.html
  2. Stewart, I. (1989). Does God Play Dice? Cambridge, Blackwell.
    http://www.amazon.com/exec/obidos/ASIN/1557861064
  3. Devaney, R. L. (1990). Chaos, Fractals, and Dynamics: Computer
    Experiments in Mathematics. Menlo Park, Addison-Wesley
    http://www.amazon.com/exec/obidos/ASIN/1878310097
  4. Lorenz, E., (1994) The Essence of Chaos, Univ. of Washington Press.
    http://www.amazon.com/exec/obidos/ASIN/0295975148
  5. Schroeder, M. (1991) Fractals, Chaos, Power: Minutes from an infinite paradise
    W. H. Freeman New York:
  1. Abraham, R. H. and C. D. Shaw (1992) Dynamics: The Geometry of
    Behavior, 2nd ed. Redwood City, Addison-Wesley.
  2. Baker, G. L. and J. P. Gollub (1990). Chaotic Dynamics.
    Cambridge, Cambridge Univ. Press.
    http://www.cup.org/titles/catalogue.asp?isbn=0521471060
  3. Devaney, R. L. (1986). An Introduction to Chaotic Dynamical
    Systems. Menlo Park, Benjamin/Cummings.
    http://math.bu.edu/people/bob/books.html
  4. Kaplan, D. and L. Glass (1995). Understanding Nonlinear Dynamics,
    Springer-Verlag New York. http://www.cnd.mcgill.ca/books_understanding.html
  5. Glendinning, P. (1994). Stability, Instability and Chaos.
    Cambridge, Cambridge Univ Press.
    http://www.cup.org/Titles/415/0521415535.html
  6. Jurgens, H., H.-O. Peitgen, et al. (1993). Chaos and Fractals: New
    Frontiers of Science. New York, Springer Verlag.
    http://www.springer-ny.com/detail.tpl?isbn=0387979034
  7. Moon, F. C. (1992). Chaotic and Fractal Dynamics. New York, John Wiley.
    http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471545716.html
  8. Percival, I. C. and D. Richard (1982). Introduction to Dynamics. Cambridge,
    Cambridge Univ. Press. http://www.cup.org/titles/catalogue.asp?isbn=0521281490
  9. Scott, A. (1999). NONLINEAR SCIENCE: Emergence and Dynamics of
    Coherent Structures, Oxford http://www4.oup.co.uk/isbn/0-19-850107-2
    http://www.imm.dtu.dk/documents/users/acs/BOOK1.html
  10. Smith, P (1998) Explaining Chaos, Cambridge
    http://us.cambridge.org/titles/catalogue.asp?isbn=0521477476
  11. Strogatz, S. (1994). Nonlinear Dynamics and Chaos. Reading,
    Addison-Wesley
    http://www.perseusbooksgroup.com/perseus-cgi-bin/display/0-7382-0453-6
  12. Thompson, J. M. T. and H. B. Stewart (1986) Nonlinear Dynamics and
    Chaos. Chichester, John Wiley and Sons.
    http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471876844.html
  13. Tufillaro, N., T. Abbott, et al. (1992). An Experimental Approach
    to Nonlinear Dynamics and Chaos. Redwood City, Addison-Wesley.
    http://www.amazon.com/exec/obidos/ASIN/0201554410/
  14. Turcotte, Donald L. (1992). Fractals and Chaos in Geology and
    Geophysics, Cambridge Univ. Press.
    http://www.cup.org/titles/catalogue.asp?isbn=0521567335
  1. May, R. M. (1986). "When Two and Two Do Not Make Four."
    Proc. Royal Soc. B228: 241.
  2. Berry, M. V. (1981). "Regularity and Chaos in Classical Mechanics,
    Illustrated by Three Deformations of a Circular Billiard."
    Eur. J. Phys. 2: 91-102.
  3. Crawford, J. D. (1991). "Introduction to Bifurcation Theory."
    Reviews of Modern Physics 63(4): 991-1038.
  4. Shinbrot, T., C. Grebogi, et al. (1992). "Chaos in a Double Pendulum."
    Am. J. Phys 60: 491-499.
  5. David Ruelle. (1980). "Strange Attractors,"
    The Mathematical Intelligencer 2: 126-37.
  1. Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.
    New York, Springer.
    http://www.springer-ny.com/detail.tpl?isbn=038796890
  2. Arrowsmith, D. K. and C. M. Place (1990), An Introduction to Dynamical Systems.
    Cambridge, Cambridge University Press.
    http://us.cambridge.org/titles/catalogue.asp?isbn=0521316502
  3. Guckenheimer, J. and P. Holmes (1983), Nonlinear Oscillations, Dynamical
    Systems, and Bifurcation of Vector Fields, Springer-Verlag New York.
  4. Kantz, H., and T. Schreiber (1997). Nonlinear time series analysis.
    Cambridge, Cambridge University Press
    http://www.mpipks-dresden.mpg.de/~schreibe/myrefs/book.html
  5. Katok, A. and B. Hasselblatt (1995), Introduction to the Modern
    Theory of Dynamical Systems, Cambridge, Cambridge Univ. Press.
    http://titles.cambridge.org/catalogue.asp?isbn=0521575575
  6. Hilborn, R. (1994), Chaos and Nonlinear Dyanamics: an Introduction for
    Scientists and Engineers, Oxford Univesity Press.
    http://www4.oup.co.uk/isbn/0-19-850723-2
  7. Lichtenberg, A.J. and M. A. Lieberman (1983), Regular and Chaotic Dynamics,
    Springer-Verlag, New York .
  8. Lind, D. and Marcus, B. (1995) An Introduction to Symbolic Dynamics and Coding,
    Cambridge University Press, Cambridge http://www.math.washington.edu/SymbolicDynamics/
  9. MacKay, R.S and J.D. Meiss (eds) (1987), Hamiltonian Dynamical Systems A reprint
    selection, , Adam Hilger, Bristol
  10. Nayfeh, A.H. and B. Balachandran (1995), Applied Nonlinear Dynamics:
    Analytical, Computational and Experimental Methods
    John Wiley& Sons Inc., New York
    http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471593486.html
  11. Ott, E. (1993). Chaos in Dynamical Systems. Cambridge University Press,
    Cambridge. http://us.cambridge.org/titles/catalogue.asp?isbn=0521010845
  12. L.E. Reichl, (1992), The Transition to Chaos, in Conservative and Classical Systems:
    Quantum Manifestations Springer-Verlag, New York
  13. Robinson, C. (1999), Dynamical Systems: Stability, Symbolic
    Dynamics, and Chaos, 2nd Edition, Boca Raton, CRC Press.
    http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=8495
  14. Ruelle, D. (1989), Elements of Differentiable Dynamics and Bifurcation Theory,
    Academic Press Inc.
  15. Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics:
    an Introduction, Wiley, New York.
    http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471827282.html
  16. Wiggins, S. (1990), Introduction to Applied Nonlinear Dynamical Systems and Chaos,
    Springer-Verlag New York.
  17. Wiggins, S. (1988), Global Bifurcations and Chaos, Springer-Verlag New York.


back to table of contents

[4.2] What technical journals have nonlinear science articles?

Physica D The premier journal in Applied Nonlinear Dynamics
Nonlinearity Good mix, with a mathematical bias
Chaos AIP Journal with a good physical bent
SIAM J. of Dynamical Systems Online Journal with multimedia
Chaos Solitons and Fractals Low quality, some good applications
Communications in Math Phys an occasional paper on dynamics
Comm. in Nonlinear Sci. and Num. Sim. New Elsevier journal
Complexity
Discrete and Continuous Dynamical Systems One of two parts produced by AIMS
Dynamical Systems formerly Dynamics and Stability of Systems
Ergodic Theory and Dynamical Systems Rigorous mathematics, and careful work
International J of Bifurcation and Chaos lts of color pictures, variable quality.
J Differential Equations A premier journal, but very mathematical
J Dynamics and Diff. Eq. good, more focused version of the above
J Fluid Mechanics Some expt. papers, e.g. transition to turbulence
J Nonlinear Science
J Statistical Physics Used to contain seminal dynamical systems papers
Nonlinear Dynamics Haven't read enough to form an opinion
Nonlinear Processes in Geophysics New, variable quality...may be improving
Physics Letters A Has a good nonlinear science section
Physical Review E Lots of Physics articles with nonlinear emphasis
Regular and Chaotic Dynamics Russian Journal


back to table of contents

[4.3] What are net sites for nonlinear science materials?


back to table of contents


<< >> Title Contents